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ON THE SUPPERADDITIVITY
OF INFORMATION MATRICES
IN GAUSS-MARKOV MODEILS

By
A.S. Hedayat and Dibyen Majumdar

Department of Mathematics, Statistics
and Computer Sclence

University of Illinois, Chicago

1. INTRODUCTION

Sclentists perform experiments to gather informstion about

some underlying phenomenon, What constitutes information largely
depends on the problem at hand and the mode of inference to be made,
However, one thing is obvious that, no matter what the definition
of information, it should be nondecreasing in the number of obser-
vations, ﬁere, we shall exclude from our consideration cost and
any other nonstatistical/mathematical matter. For example, the
notion "amount of information per $" 1s of no consideration to us.
With this philosophy scientists working on identical problems
should combine their data for the purpose of analysis and inference.
There are various notions of information which have found
popularity amoung sclientists. Before adopting any such notion
one has to establish the minimum requirement that it is nondecreas-
ing in the number of observations., Statisticians dealing with
experiments whose data follow the linear model, by and large, have
adopted the inverse of the variance as the amount of information,
Or more generally, the "smaller" the variance-covariance matrix
the more information has been obtained, Equivalently, the "bigger"




the information matrix (the inverse of the variance-covariance
matrix) the more information 1s provided. Here, we have adopted
the following concept, If A and B are two nonnegative definite
matrices then we say A 1is at least as large as B (written as

A 2 B) if A-B is a nonnegative definite matrix. A 1is bigger
than B (ADB) if A-B 1is positive definite.

As we noted earlier if D1 and D2 are two sets of data
for the same problem they should be combined for the purpose of
analysis and inference since information, f, provided by D; U D,
is as large as !1 or .12, the information provided by D, and
D, respectively. Thus in general S 2 f, ,1 = 1,2. 1In view of
the above & natural question is this, Are there settings for
which c.e can relate f to f, + 12. This paper answers this
question in affirmative., We establish that for the classical
linear model there 1s a supperadditivity for the information

matrix of the combined data, i.e., f = ,1 + !2 whether or not i
there are nuisance pavameters, We prove this in Section 3, In

this section we also give both statistical and geometrical char-
acterizations of cases in which f = f, +J,.

In Section 4 we study the status of Qauss-Markov theorem

for the combined data and shall explore its relation to associated:%;;zzf
Gauss -Markov theorems for the individual sets of data., Explicity, Eg i
we provide answers to the following questions. (1) Given a :::::j
linear parametric function p'é, (02 is the vector of nuisance —

parameters) which is estimable under both sets of data, then underics

I
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what conditions can the BLUE of p'; under the combined data be
expressed as a linear combination of BLUES of p'el under indi-
vidual sets of data. (il) The same question as in (1) except
that we 1nsist the same conclusion be true for all estimable
functions, Besides characterization of involved cases we give
explicit forms of the linear functions of BLUEs so that we can ?
save some computational time in case for each set of data the
BLUEs have already been computed. ‘
In Section 5 we indicate how the results in Sections 3 and 4 E
could be utilized in the area of optimal design of experiments,
We glve examples to illustrate our results throughout the paper,
To develop our theory we need some preliminary results which we

have summarized in Section 1.

2., PRELIMINARY RESULTS. .
d In this section we shall introduce the model, some notations

and state some known and not so well known results, which are
needed in the subsequent sections,

We shall be using the classicaliauuss-narkov model through-
out this paper. This may be described as follows:

Y= X0, + X0, + €. (2.1)

Here Y 1is the vector of observations, xl is the design matrix
associated with @,, which is a vector of all parameters of

T—— T T e r———




interest. x2 is the design matrix assoclated with 92, which
is a vector of nuisance or covariate parameters. e is the usual
error vector with E(e) = 0, which we assume to be homoscedastic,
i.e., V(e) = ¢°I , where I dentes the identity matrix whose dimen-
sion will be clear from the context.

Throughout we adopt the following notation: For a matrix A,
J(A) will denote the column space of A, r(A) the rank of A
and A~ a generalized inverse of A, The matrix PA will denote
the orthogonal projection operator onto f(A). More explicitly,
Py, = A(A'A)A'. Orthogonality for us, is always in terms of the
dot product, If A, B and C are square matrices then the block

diangonal matrix

5 9

will be denoted by diag (A,B). Diag (A,B,C) will hé.ve a similar
meaning. '

We shall now state and prove four lemmas, Lemmas 2.1 and 2.2
describe well known results of Gauss-Markov models in a form suit-
able for us. Lemmas 2.3 and 2.4 are purely algebraic in nature.

Lemma 2,1. b'Y 1s the BIUE of the linear parametric function
p'é for the Gauss-Markov model

Y=X0+e¢, Ele)=»0, V()-caI
ire X'b=p and b ¢ A(X).

5 o et e bl




5.‘

Proof. b'Y 1is unbiased for p'6 4iff X'b = p, Then, by
Lehmann-Scheffe Theorem, b'Y 1is BLURX of p'e iff

COV(b'Y, z'Y) = O for every z for which E(z2'Y) = O for all 8.
i.e., b'z =0 for every z such that 2z'X = 0. Note that the
condition of the Lemma on b satisfies the Lehmann-Scheffe con-
dition since if b ¢ £(X), then obviously b'z = 0, whenever

z'X = 0, Conversely, given b write b = b1 + b2, where

b, € £(X) and béx = 0. Hence by Lehmann-Scheffe theorem

0= b'b, = blb, ,

which implies by =0, i.e., b= by e L(x).

Lemms 2.2. (1) b'Y 1is BLUE of the parametric function p'o,
for the Gauss-Markov model (2,1) iff

xi‘b =p ; Xéb =0 and b e aﬂ(xl:XQ)

(11) b'Y 4is BLUE of E(b'Y) for the model (2.1), iff

b e JZ[(I-pxa)xll

BRI MR Do o5 ke s b i

Proof. (1) Unbilasedness of b'Y implies

b'x191 + b'xZaz = p'Ol » for all 91, 92




Hence Xi{b = p and X3b = 0. The rest of (1) follows from
Lemma 2.1, Observe that Xib =0 iff b= (I-Bxa)b.

But b = X;h, + X,h, for some h,,h,, since b € A(X,:X,) .
Hence b = (I-Pxe)b = (I-sz)xlhl € A[(I-sz)xl]. Conversely if
b'Y = h'Xi(I-gxa)Y, then Lehmann-Scheffe Theorem can be used
exactly as in Lemma 2.1 to show that b'Y is BLUE of E(b'Y).

Lemma 2,3, Let A and B be two matrices such that
2(A') = £(B'). Then for each p ¢ fL(A'), there exists a vector

h and a scalar a (depending on p) suech that

A'A h= ap
(2.2)
B'Bh= (1l-a)p

are simultaneously satisfied, 1ff B'B = A A'A for some )\ 3 O,

R

Proof., First note that JA(A') = £(A'A) and JM(B') = 4(B'B) ,
so pe L(A'A) = A(B'B). Also, if (2.2) is satisfied for some h, i
for a given non null p, then p'h = ap' (A'A)"p = (1l-a)p'(B'B)p.

e

Solving for a, we obtain

;
¥
'

p'(B'B) p
p'(A'A)Dp + p'(B'B) D

(2.3)

Hence (2.2) implies that a 1s of the form (2.3). We shall now
prove the 'only if' part of the theorem, It is well known that
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any two nonnegative definite matrices can be simultaneosly dilago-
nalized by a single nonsingular matrix (see Rao and Mitra (1971),
p. 122). So, let T be a nonsingular matrix such that

A'A =T diag(Dl,O)T s B'lB=T! diag(Da.O)T (2.4%)
for positive definite diagonal matrices Dl and D2 of the

same dimension (say r), since £(A'A) = AL(B'B). Equation (2.2)

may be written as

T! d:la.g(Dl,O) T h= aqap
T! dia.g(D,‘,,o) T h= (l-a)p

(2.5)
Suppose A'A and B'B are mxm matrices, Partition

T! = (T]'_ : Té)

where Ti is mxr and Té is mym-r, et 8 =Th,
q= (1)t

of T, partition s' = (8] :8)),qa' = (qf :q}),Q' = (Q} :Q}). Then

QT' = I impllies Q,T! = I , Q,T{ = O. Since by (2.4%)
L(Ar) = .!(Ti) » P= T{w for some w. Hence q, = Q;p = 0 and
Q; = Q;p = w. So as p varies over the whole of J(Ti). q,

varies over the entire euclidean space RT. Equation (2.5)

reduces to

= Qp , where Q'l = T!', Corresponding to the partition




D, s, =agq
171 1 (2.6)

(1-a) qQ;

Dy sy

If there exists h,a such that (2.2) is satifled for all
p € A(A') , then there exists s;»@ such that (2.6) is satisfied
for all q, € RY. Given q, ¥ 0, it follows from (2,6) that
-1
8y =aDy q

i.ec, DQDil ql

1
(l‘a) D2 ql

1

(2.7)

a'l(l-a)ql

Note that a'l(l-a) » 0, since from (2.3) O0< a< 1.
Write D‘j = dia@(d,jl""’djr) » J = 1,2, Since (2.7) is satisfied
for all q, € R¥, dy, /d;, = a™(1-a) , for all 1= 1,...,r,
by choosing qj = (1,2,...,1), a vector of one's, Hence

D,

p = a"1(1-a)D, , which implies B'B = A A'A, with A = o™ (1-a).

To prove the 1f part, notice that if B'B = ) A'A for some

A > 0, then the only admissible value of a, by equation (2.3), is

-1
a=2 Y1+ ) =1+t (2.8)
If h 4is chosen to satisfy A'A h= ap, then B'Bh = AA'Ah =
Aap = (l-a)p , by equation (2.8)., Hence (2.2) is satisfied
whatever p e A(A').

ILet A and B be two matrices with the same number of

columns, Then the following 1s well known (Rao(1965) p. 34):

- o




L(A') NA(B') = (O} = A'A(A'A + B'B)” A'A = A'A .
In the following Lemma the converse 1s also established.
Lemma 2.4, The following are equivalent.

(1) &(A') nA(B') = (0}
(11) A'A(A'A + B'B) A'A = A'A for some g-inverse of
A'A 4+ B'B,

Proof. To prove (ii) = (1) observe that if (i1i) 1s satisfied for
some g-inverse of A'A + B'B , then it is satisfied for all
g-inverses, ILet T be a nonsingular matrix such that

A'A =T' diag(Dl,o,O)T, B'B=T' diag(De,DB,o)T vwhere Dl,D2,D3
are diagonal matrices. D1 and D2 are of the same dimension,

D, 1is positive definite. Then A'A + B'B = T' diag(Dl + D2,D3,O)T.

1
Choose the followling g-inverse

"1 atag((py+0,) 7L, D5, 0077t

(A'A + B'B) " = T
Then (i1) implies

d1ag(D,,0,0) disg((D;+Dy) ",D;,0) diag(D;,0,0) = dlag(D,,0,0)

D

ioeo » Dl(D1+D2

1l
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1.30’ D = O

Hence if T' = (Ti : Té : Tg) in the partitioned form, then

A'A=T!D, T

10: T4 and B'B=T.D,T

2737°2°

Thus J£(A'A) = .C(Ti) and 4(B'B) =£(Té) . Hence (1) follows.

3. A LOWER BOUND ON INFORMATION MATRICES

The main purpose of this section is to prove that the concept
of information in the context of linear models defined in the
introduction is superadditive, i.e., the information associated
with the combination of two experiments is at least equal to the
sum of the information provided by individual experiments, We
also examine the statistical and geometrical interpretation of
those cases where equality is achieved, Various examples are
provided to elucidate the theory.

Let there be two experiments with the following models:

Experiment 1: Y; = X;,0, + X;58, + €, , E(el) - 0.'V(€1) = ¢°I
Experiment 2: Y, = X,,8, + X508, + €5, E(ep) = 0, V(e,) = o°1
The meaning of the symbols in each model is the same as in equa-

tion (2.1). The number of observations in experiment 1 is n,
and in experiment 2 is n,. It 1is well known that the information

s vl o B R Ben o 4



11,

matrices for estimable functions of Ql ror_the first and second

experiments are respectively
$1= xil(Inl - X (X{oXy5) Xjp)X)y

2 = X541 (In, - Xop(X3pXpp) X3o)Xp; -

The term information matrix stems from the fact that the variance

of the BLUE of an estimable function p'® is proportional to

1l
p'lip and p'!ép for the two experiments, Similarly the linear
model and the information matrix associated with the n, + n,
observations obtained from combining the two experiments may be

written as

Yo () = (Do + ((2)ep + 0 Be) = 0, W(e) = o

and
) 4 . X
£ = Xy 2 X3 (3, - (0) (RoX10+ X3oKap) "(Xi : o) 1)

wvhere n = n1 + n2 .
For simplicity of notations, let us define the following
orthogonal projection operators:

P P

= P. P=P P
2 <X22 ’ (::2) ’
' 2

= P
1 x12 ’

[
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where the notation PA was defined in Sectlion 2. The information

matrices may now be written as

fy= xil(Inl‘Pl)xn

$o = xél(Inz‘Pe)xm

o= (x5, ¢ xél)(xn‘*’)d;n
1

We shall drop the subscripts for the identity matrices whenever §

they are understood from the context. f
It 1s easy to verify that f = f, and S a f,. Hence infor-

mation is nondecreasing in the number of observations. 1In the

following theorem we establish much more - information matrices
aare shown to be superadditive.

Theorem 3.1, Sa ’1.* !2 (3.1)

with equality ifrf
X X, X
(Xéz o) =4 (g o) (3.2)

_ Proof: f - ’1 - ’2 = (xil H Xél)(diag(Plopa)’P)

(x.‘,l,

P 48 the orthogonal projection operator onto ,5(xé ) while
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d:lag(Pl . P2) is the orthogonal projection operator onto

(x
. Clearly,

x2

e

X, O

X
I 4 (lez) « 45 x22) .

Thus
(dia.g(Pl , P2))P =P

So, by Theorem 5.1.3 of Rao and Mitra (1971) diag(P, , Py) - P

is the orthogonal projection operator onto

(2 xzz)} n{« (22)}‘ - §(say)

Here for any subspace L, L* will denote the space of vectors

orthogonal to each vector in L.

In particular, d:lag(Pl , Pa) -P 1is nonnegative definite and
hence f -5, -$,20.
Equality 1s achieved iff

(diag(P ’ Pz) "P)(:zli) =0,

which is equivalent to

L (xn) cét (3.3)

Y et o apn A s
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Note that & consists of vectors (24 :zé)' such that

z X 0 z

1 12 . 1 -
(za) ¢« o xae) and (X, : xéa)(za) =0. l.e, 2z =X,
zZ, = x22u , and Xiaxlzul + xé2x22“2 = 0 for some uy and uy .
(3.3) 1s satisfied iff X{y%Zy + X)1Zp = O for all z;,Z, Of the

above form, This is equivalent to the statement

XjyXyot) + Xy Xpplp = O Whenever Xj X)oU) + XjoXpous = 0 (3.4)

(3.4) 18 clearly equivalent to (3.2). Hence the theorem,
Note that (3.2) and (3.4) are equivalent to:

X{1X1281 = X31Xp08, whenever X . X o8, = X3oX508, (3.5)

These equations give geometric interpretation of equality in equa-
tion (3.1), In the next theorem we give a statistical interpretation.
We shall show that every BLUE in the combined experiment is a sum
of some suitably chosen BLUEs of the individual experiments. Each
of these BLUEs may, however, be estimating different parametric
functions,

Let %, = {All BLUEs for all estimable functions of 8, in
experiment 1), 1 = 1,2, and £ = {All BLUEs for all estimabdle
functions of 6, in the combined experiment}, By Lemma 2,2 (11),
81 = (b'Y|b ¢ A[(X- 1)xnn , 1= 1,2 and
£ = (b'¥Yb e LL(x-P)(X§y 1 X3,)'1.
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Theorem 3.2. f = ’1 + "2 iff any b'Y ¢ ¢ can be written as

| ]
b'Y = bj¥Y; + byY, with biY, ¢ ei ,i=1,2.

Proof: If S = ¢ 1+ !2 » then from the proof of Theorem 3.1 it
follows that \

(xi1 : X3,)(I-P) = (xil : Xa'l)(dia.g(I-Pl » I-Py)).
Hence n'_(xi1 : Xél)(I-P)Y = h'xil(I-Pl)Y1+ n'xz'l(I-P,‘,)ir2 .
This establishes the necessity. To prove the sufficiency,
suppose b'Y € € and

D'Y = b{Y; + biY, = (b]'_ : bé)Y

where bIY; € 81 and biY, € 82 . Applying Lemma 2.2 (1) to the
combined model,

b X, X
(b;)“(n ;

X3y X2
i.e., for some h,h1
by = X;3h + X50 (3.6)

by = X h + Xoh, (3.7)

T S e
¥ 2
KT
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Premultiplying (3.6) by (I-Pl) we get
(I-Pl)bl - (I-Pl)xllh : {

But (I-Pl)bl = b, , since b, el[(I-Pl)xu] and I-P; 1is
idempotent. Hence '

by = (I-Pl)xuh . %‘

Similarly b, = (I-Pa)leh , from equation (3.7).
So b'Y = h'Xil(I-Pl)Yl + h'x,él(I-P?_)Ya. Since b'Y can be any
element in £, this implies that for each s, there exists an h
‘ (a function of s) such that

8'(X], : X5,)(I-P)Y = h'Xil(I-Pl)Yl + h'Xél(I-Pz)Ya (3.8)

Taking expectation on both sides of (3.8), we obtain

R TR SN

s'f = h'$, + h'S,.

Defining Jo=91+ 45 (3.9)

Ss = loh . (3.10)

Since (3.10) is true for all s, ¢ -.fon, for some matrix BH.

Y BT
B v "

) g b e
- L T g e - - ~iap—

e OIS T et . % p
by - gy 7\,:, 4‘,"{» S‘]" .:,"“ v ‘m
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Thus L(f) e £(f)) . But 2(8.) 2(f) from (3.1). Hence we
have,

£($) = A($)) (3.11)
From (3.10) we get,
h=g_$s for some -
Now taking variances in (3.8), it follows that

8'fs = h'f h + hifh = hif h= 8'$9.'8 9 98
- 8148255, |
since ”;"o - ”;"o = § , using the fact that .f;' is a
g-inverse of f , the latter being symmetric, and using (3.11).

The above being true for all s, and since both § and 1.9
are symmetric, one may write

15,9 =S (3.12)

Note that this relation is true for all g-inverses of J o Bince
#£,4 1s invariant under choice of f_ (see Rao and Mitrs (197)
Lewma 2.2.#(111)).
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Let T be a nonsingular matrix such that S = T! diag(D,0)T
and ’o = T'diag(Do,o)T . D and D, have the same dimension
and are both nonsingular due to (3;11). Choose
g5 = 7 Ya1ag(D;},0)1'"1. Using these representations in (3.12)
we obtain D =D, and hence ¢ =§ .

In view of Theorem 3.2, the results of Theorem 3.1 can
be given the following interpretation. f = ¢ 1+ K ] o iff

the algebraic sum of £, and €,. If S$> % +S,, then
(3.13) 1s violated. This means that elements in ¢ - €, o ¢,
are BLUEs which cannot be computed from BLUEs of the original
experiment. This is surely due to one or both of the following

conditions:

C.1. (Expectation condition): There exists a p € £(f) which
cannot be written as p'e, = pje, + P38, with p, e .z(!l) and
Pp € 1(12) . Note that the column space of an information matrix
provides all estimable functions.

C.,2. (Variance condition): There exist a p in the set

{vlp € £(f) anda p'e, = pje, + pie, , where p, ¢ £(s;) and

Pp € zuz) for some 1, , Pz} , but for all representations of
such a p, the BLUE of ""1 in combined experiment has a smaller
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variance than the sum of the BLUE of piel in experiment 1 and
the BLUE of péel in experiment 2.
We shall elucidate the above with some examples in block
i designs. First we state a corollary which gives a general
characterization of S = f 1+ 12 for block designs. _‘
We assume the usual additive model. 6, consists of the
treatment effects and P the block effects. Let experiment

1 use blocks Bl""’Bq’Bq?l-l""’Br and let experiment 2 use
blocks BQ+1, ""Br’Brl-l’ ""Br+s . To keep our discussions
general, we assume that the number of observations in Bi for
experiment 1 is kli and that for experiment 2 1is k21 , and
kii need not equal k21 when q+1<1<csr. [ret N1,1=1,2

| ‘denote the incidence matrices for the two experiments, 1i.e.,

N =XhX%p and N = X5 %50 - i
X, and X,, has r+s columns each. Moreover partition :

where lln has q columms, !!12 and '22. have r-q columns

each, !!23 has 8 columns., It is clear that Xilez -

diag(Kyy,..-5%1000,...,0) , X3oXoo = d18g(0,...,0,k50 .0, sKpp,)
The corollary may now be stated.
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Corollary 3.1. For a block design S = *‘1 +J, 1ife
(atag(x]t kJ1))N], = (datag(k;l L NS, (3.13)
TS Rty gL P K2qe1r e - Xoqe1) M2 (3-

Proof: Prom equation (3.2), f = !1 + "2 iff there exists a matrix
T such that

N] = XjoXoT and Nj = X3pXppT
Partitioning T' = [Ti : T @ Té] ,» one obtains

i, = (atag(iyy,...0 )Ty , Wi, = (atag(icy  qs-0 0k, ))T,

Ny = (dias(kgq,,.l. R W ) Niy = (a1ag(ky\yqseeesKopyg) )’1‘3 .

Clearly T, and ~T3 always exists, and T, exists iff (3.13)
is satisfied. {

Thus S = § 1+ 12 iff the designs in the common dlocks are
"proportional” in the sense of (3.13). In particular, if
kn = “21 s, 4+ 1 <1 g r, then the designs should be isomorphic,
i.e., “ie - lléa . If the‘two experiments have no blocks in common i
then obviously S = !1 + !2 -- a fact which is generally well

known to researchers in the theory of optimal designs.

Exapple 3.1. This is a simple though somewhat pathological

example. However, one may easily extend it to more nontrivial | <
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cases, Consider the following block designs with incidence matrices
11 1
N, = R, =
2 (1 o/ ' 2 (1 g)

the two experiments using the same treatments and blocks. The

combined experiment has the incidence matrix

Na(:i .

Here R(f) = r(!l) = r(f,) --there is only one estimable function.
Moreover "1 - !2 . But ¢ > !1 + 5, , by Corollary 3.1. This

13 because each experiment has an observation confounded with the
second block. These observations are released for estimation of
treatments when the experiments are combined. This is an example
of condition c2. .

le 3.2. Consider the following experiments using the same
treatments and blocks.

ioo 01
00 010
= 011))"2' 1o<1’)

011 101

Naming the treatment effects T4, 12icx k, we see that the
estimable functions in each experiment are Ty~ T2 and T3 =Ty

and their linear combinations only. T2~ T3 becomes estimable




22,

too upon combining the experiments. Here ¢ 1 =f, but I >4 1+ LI
It will be seen in the next section that the BLUEs for T~ To
and T Ty for the combined experiment is a combination of the
BLUEs of the individual experiments. Thus this is an example of
condition Cl. A combination of designs in Example 1 and Example 2
will give an example of both Cl and C2.

In view of Corollary 3.1 it 1is easy to construct examples
where f = L !2 . Note also that f = ’1 + 12 when there are

no nuisance parameters, i.e., 8, = 0.

Ik, ON THE ADDITIVITY OF BIUES IN COMBINED EXPERIMENTS.

If two sets of data are collected for a fixed linear model
‘then it 1s obvious that one should combine the data and carry out
one analysis. In Section 3 we measured the gain in combining
the data in terms of information matrices. In this section we
shall study the status of the Gauss-Markov theorem for the combined

data and explore its relation to the associated Gauss-Markov

theorems for the individual sets of data. In particular, we shall
deal explicitly with the following gquestions: '

Question. 1. Suppose we are given a linear parametric function
p'el which is estimable under both sets of data. Under what

RE N S SR, Db 3 AT N

conditions,

BLUE of p'el under the combined data = linear com- (4.1)
bination of BLUEs of p'ol under the individual sets
of data?

b




23.

Question. 2. Same as Question 1, except that we insist that
the statement (4.1) is true for all estimable functions. Thus
if ¢ 1s any linear function of §,; estimable under the both
sets of data, we want

BLUE of ¢ under the combined data = linear com-

bination of BLUEs of ¢ under individual sets of
data.

(4.2)

We shall completely characterize cases under which (4.1)
and (4.2) are valid. These characterizations turn out to be
mathematically interesting and reveal more about the structure of
the information matrices. These results would be of practical
significance since in the cases where (%.1) or (4.2) are valiad,
a lot of computational time can be saved if the BLUEs for each
individual sets of data are already available.

Before starting on these problems, we remark that Theorem
3.2 answers a question similar to Question 2. If f = !1 + 12 ,

h 1s a solution of
"hap’ (403)

and p, "’1h » 1 = 1,2 then from the proof of the necessity of
Theorem 3.2, (BLUE p'é; 1in combined data) = (BLUE p{e; in
experiment 1) + (BLUE P38, in experiment 2). Note that Py
and p, are invariant whatever h, satisfying (4.3). However,
pial and péel may not be multiples of p'el.
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Let us look at Question 1. Suppose biY1 is the BLUE of
'8, 1in experiment 1,1 = 1,2. Here pe A(,) nA(f,). If
alb]'_Y1 + aabéYé is the BLUE of p'e1 when the data are combined,
the unbiasedness condition, p'e, = E(albin + aabéYa) ,» for all e,,
implies that a4+ o= 1. Among all such unblased estimators
the one with minimum variance has

V(biY,)
alsmypaj_gmgg- a(say) and ay = l—a,

Explicitly,

X
Q= -p 2° -~ (4.4)
p'fip + p'fop

So the only linear combination which can be BLUE of p'e1 under
the combined experiment is

b'Y = ablY, + (l-a)béYa . (4.5)

1l

The following Theorem answers Question 1.

-

Theorem 4.1, Let p e ml) n £(!2) and p ¥ O. Then equation
(4.1) 1s satisfied iff there exists vectors h, and h, such that J

RS S W o

]

fihy = ap , $5by = (1-0)p (4.6)
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Xio¥1ih + XjoX)ohy = 0, X3pXorhy + XioXoohy = 0 (B.7)

Proof: b'Y in (4.5) is obviously unbiased. By Lemma 2.2 (1)
it is BLUE of p'el ire

®1) o B2
(1-a)b, 21 %2

1.e., 1ff there exists hl and h2 such that

ab, = X h + Xpphy (4.8)
(1=a)b, =Xy hy + Xyphy (4.9)

(4.8) can be equivalently written as

ab, = (I-Pl)xuhl + PX,.hy + X300, (%.10)

where P, = Jtl,‘,(){:i_zxm)'xj_2 , 88 in Section 3. Premultiplying
(4.10) vy Xjp Wwe get, since Xijb, =0,

0 = XjoXyyhy + X{pXyoh, - (4.11)

Premultiplying (.11) by X,5(X{,X,5)",

O = Plxllhl + tha » (“.12)

rs rr Ay
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This, together with (4.10) implies
aby = (I-P,)X;;hy (4.13)
It is easy to see the equivalence of (4.11) and (4.12). There-
fore (4.11) and (4.13) together imply (4.10). Hence (%.10) is
equivalent to {(4.11), (4.13)}. Premultiplying (#.13) by
Xil , wWe have, since xilbl =p,
ap = f1hy (4.14)
By Lemma 2.2 (ii)
b, = (I-P1)X); ¢
for some t. Thus P = Xil(I-Pl)xllt.. So (4.14) becomes
aXi, (I-P,)X,, t = X{,(I-P))X;, by ,
which implies that
a (I-P))X;; t = (I-P1)X;, by .

Thus (4.13) and (4.14) are equivalent. Hence (4.8) is equivalent
to

XjoX11hy + XjoXiohy = O
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and

"lhl = QqQp

Similarly (%.9) is equivalent to

’2*’1 = (l-a)p and X3oXpihy + XboXoohy = O,

Hence the theorem,

Let us move on to Question 2, Here, we want (4.1) to be
valid for all p in .ﬁ(ll) n .’..(.72) which we assume to be differ-
ent from {0). Let T be a nonsingular mg.trix such that,

"1 - T'dia.g(Dn,Dla,0,0)'l‘ , !2 - T'diag(Dzl,O,Daa,O)T (4.15)

where the D:I.J's are diagonal matrices, Note that the simultaneous

diagonalization of .'1 and ’2 are carried out in suech a way
p

that the corresponding component matrices in dia.g(Dn,Dia,O.o)
and diag(Dal,o,DQZ,o) aré of the same dimension, D;, and Dy,
are nonsingular. If A(f,) c .C(!a) » ‘then there will be no D,,
and we shall write the matrices in (4.15) with only three diagonal
blocks. Similar modifications are needed when 5(!2) c .l(ll) .
r LS, = .!(12) , then we need only two diagonal blocks, 1i.e.,

’1 - T'dng(nu,o)'r , !2 - 'r'dia.g(Dal,O)'.l‘ (4.16)

Considering only the general case when J[(f 1) n .@(!2) contains

neither l(!l) nor J(Jz) » We may insist that D,, and D,

S g g

e A« o oy e

et p—
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are nonsingular. The results for the special cases mentioned
above may be obtained from the general results with obvious
modifications - we shall only consider the case A(f,) = £(f,)
separately, as this is of special interest.

Partitioning, T' = (Tf : T} : Tf : T}), we get from (4.15),

Defining i
f11 = T{013Ty » F10 = TiD1oTp » Foy = TiDpTy 5 fpp = T3DpoT i
we obtain

fr=fntle s famfat (%.17)

l(’n) n "‘(’12) - [0} ’ .‘(’21) ﬂl(’az) = (0]
\ (%.18)
5(’12) ﬂzuaa) = {0} , -’Juu) = -Z(’al) = .ﬁ(’l) HZUQ) .
From Theorem 3.1 it follows that
S =l tfp+ Py + I+ R

where R 43 a nomnegative definite matrix.

Theorem %.2. BIUE of p'e, in the combined experiment
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= a(ELUE of p'e, 1in experiment 1)

+ (1-a)(BLUE of p'e, in experiment 2) (%.19)
for a1l p € A(f,) n &(f,), 1fr

fo0 =Afy, for some 3 >0 -~ (%.20)
and
with
R, = 3,5 + fpp + R satisfying

£(f1,) 0 £(R,) = (0] (%.22)

Proof: Suppose (4.19) is given. Then (4.6) is satisfied for
each p ¢ '“’11) - .ﬁ(lal) . The equation

fiby = op
can be written equivalently as

fnby=cep , fph =0

using the facts that p ¢ £(f,,) and £(f,,) nA(f),) = (0} .

T




So, equation (1;6) implies

f11h =ap and S5y h = (1-a)p ,

30.

and this is true for all p € .ﬂ(fn) . Lemma 2.3 now gives

$o7 =Afy, , for some 3 >0

which is (4.20). Observe that,

p'fop p'f5,0 1

QG =

PYIHRIop P PR IR

(4.23)

since by Lemma 2.4, p'.‘;p - p'.f;lp , 1= 1,2, Thus a is inde-

pendent of p.

Taking variances on both sides of equation (%.19), ome

obtains, for each p e f(f,,),

p's7p = o’pieip + (1-a)%p1o5p

= o?p'f 7,0 + (1-a)2p'!'2'19

= (1) pyp , using (4.23)

'P'f;P ’

where .f,-.‘u-i-la- (1+x)!u. Since this is true for all
pehif,) , we get
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™2 V(BLUE of p's, in combined experiment)
=p'fp

= p'f p

using the "(1) » (11)" part of Lemma 2.4, and (4.22). This
being the same as (4.24), we appeal to the uniqueness of the
BILUE in the classical Gauss-Markov model to conclude that the
estimator b'Y is the BLUE in the combined model. Hence we
get equation (%4.19).

Remark 4.1. Under conditions of the Theorem,

Using Lexma 2.4 and equation (4.22), we get p'fp = p',f;p ,
for each p e L(f ) ana p'fp = p'R;p , for each p ¢ "(Ro) .
In this sense S  and R, are themselves information matrices.
Thus (4.21) gives a decomposition of f into two information
matrices whose spaces are disjoint. In a sense the combined
experiment can be looked upon as the union of two disjoint
(fictitious) experiments, one consisting of the common part of

the individual experiments (corresponds to ¢ o), and the other
consisting of the remainder of the individual exper;uents
(corresponds to !12 and J,,) and the portion which is purely
the profit from combining (corresponding to R). Also note that
(».22) implies

PRV -
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£(51,) n &(R) = (0} .

Remark 4.2. Since f, = f,, + $,, and “(f),) n 2(815) = (0},
S 1 and .‘21 are themselves information matrices, by Lemma 2.4.
s 11 is the information matrix of parametric functions common to
both experiments and ¢ 12 that of function which can be estimated
from experiment 1l.only. A similar explanation holds for !21
and f,, . Thus when the conditions of the Theorem are valid,
estimable functions in .ﬂ(fl) n ..',(.‘2) are estimated by a linear
combination of the BLUEs. Estimable function from /(f,,) are
nonestimable in experiment 2, but thir BLUEs may use observations
from experiment 2 when the experiments are combined. This is
because “(f,5) n Z(R) need not be {0}. A similar observation
holds for functions from [“(f,,) .

As an example, consider the following block desigr;s, gliven
by their incidence matrices

110000 001100
li- IOOOOO,Né-i 010000
000011 000011

The combined experiment has the incidence matrix
1
0
o

Straightforwvard computations show that "'11 - ’21 = diag(0,0,A),
vhere A= 3] 77). mnd
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¥
5 -3 -1 -1
3 5 -1 -1

0 0
1{-1 =1 100
<1{1-13-1 00
s Fl-1-1-1 3 0 O
0O 0 0 0 & -4

0O 0 0 O0-4 4

Clearly the conditions of the theorem are satisfied, Hence the

BLUE of r_ - '6 is a linear combination of the BLUEs in the

5
original experiments. 73 - Ty can be estimated from experiment

2 only. L~ T2 18 estimable in experiment 1 only, but its BLUE
in the combined experiment uses observations from experiment 2 : i

also, This 1is due to the fact that the observations in block 2

in each individual experiment cannot be used due to confounding, l
but are released when they are combined, 5 - ¢3 can be eatimated
only in the combined experiment, We give this somewhat oversimple-

fied example to illustrate Theorem 4.2 in a way that can be seen

obviously without getting involved into complicated structures of
the matrices associated with problenm.

In the following theorem, the conditions of Theorem 4.2 are
expressed in a form which is better suited for computational veri-
fication, We give a general form which must be simplified in partic-
ular settings in which an experimenter is interested,

Theorem 4.3. Equation (4.19) is satisfied for all p in
..C(.fl) n.t(!a) ire

,("izxu:i) (‘izxm xieani)
“\aaxadt) € F\oXer  Xio¥rGy
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where T™' =Q' = (Q] : Q) : Q) : Qf) , T being defined in (¥.15),
and the partitions corresponding to those of T'.

Proof: As noted in the proof of Theorem 4.2, (4.6) is equivalent to

"‘llhl = ap , ,‘21131 = (1-a)p (&.26)
$iohy =0 , Fyoh, =0 (%.27)

since p € ""("11) . Equation (4.26) can be replaced by

$py =2fy,, for some ) >0, $iihy = ap (».28)

So (4.19) is equivalent to the following statement:

o~

For each p € £(f,)), there exists h,h, such 2
that (4.27), (4#.28) and (4.T7) are satisfied. (8.29) ‘

Note that (4.28) must imply that a = (14#1)"L. Let
- T™hy =8, ('!")'lp-q and partition s'-(ai:sé:si:sf‘)
and Q'm= (qi 1) ¢ qi : q}). As in the proof of Lemma 2.3,
9 » 3 and q, are all null vectors since p ¢ wn) .
Ovserve that )

$138y = Op @ D)8y = 03y @ 8; = aDyyny

USSP R




36.
The first equivalence follows since QT = I, T{Q T} = T}
and hence TiQ,p = P , since p e A(T{) . Similarly
Sioh; = 0w Diys, = Oms, =0
foohy = 0 @ Dyo8y = O w 85 = 0
Also, xilelhl + Xilezha = 0
®  XipXiohy = X{pX) Tls = X[pX)1Qfs; + X{oX;1Q4s,
o  X{,X,Q{8; = -X{oX;5h, - X} X;,Q}s, (4.30)

And similarly X3,X31hy + XjoXpoh, = O
* XjoXp3Qi81 = ~XioXoohy = X3aXp,Qhsy (8.31)

So, (%.29) is equivalent to

Por each p ¢ l(}u) , there exists h, and s,
such that !21-xlu.mm L® 0, and
(3.30) and (8.31) are satisfied. (».32)

p varies over XA(f,,) iff q; 1is any arbitrary vector, which
is true iff s, = (1-0-\)”1'0{}_111 is any arbitrary vector.
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s, and 85 must be O as we have already noted. So, (4.32) is
equivalent to

"21 = *"ll , for some ) » O, and there exists
matrices H and S such that

X]0%3119] = XioXyoH + X{5X,,Q}S

Xho¥019 = XaoXool + X30%51S - (4.33)

Clearly (%.33) is equivalent to (%.20) and (4.25).
A case of special interest is when both the experiments are
designed to have the same estimable functions of ¢ 1 il.e.,

£(5) = £(8,) (8.34)

In this case S5 =S5 =0,y =517, =95, R, =R
Theorems 4.2 and 4.3 can be restated with some simplifications
when (%.34) is satisfied. We do these in Corollaries 4.1 and 4.2,

Corollary 4.1. If [£(f;) = £(f,), then for each p ¢ 2(%,),
BIUE of p'el in the combined experiment 1s a linear combination
of the BIUEs of p'el in the individual experiments iff

!2-1.71 for some ) > O
and

N
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Corollary 4.2. If [A(f,) = X(f,) then equation (%.19) is
satisfied for all p ¢ A(f,) iff

Sy =2fy for some 3 >0
and
l(xiexu“i) c 0(xi2x12 xizxn“é)

X32%51U1 Xhokoo  XjoXo,Uh

where U' = (U]'_ : Ué) is the inverse of T, which is any non-
singular matrix diagonalizing f 1 i.e.,

s, = T aiag(D,,0)T,

). Both T{ and U] have as many columns

and T' = (T} : T}
as r(f,).

As illustrations consider the examples in Section 3. 1In
Example 3.1, !1 = !2 but the conditions of Corollary 4.2 are

violated. Hence the BLUE of " T2 is not a linear combination

of BLUEs of the individual experiment. Clearly, the observations i
in Block 2 in the individual experiments can only be used when
the data are combined.

In Example 3.2, !1 - !2 and the conditions of Corollary
%.2 are satisfied. The BIUEs of «r; -7, and T3~ Ty are obtained
a8 linear combinations from the individual experiments.
! However ¢, - T3 is estimable only when the data are combined.
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; * Thus to obtain its BLUE the entire data has to be put together
i and analysed. This leads us to the next question. Under what
conditions is (4.1) satisfied for all p ¢ A(f) , if

A(f) = £(,) = £(F,) . The following corollary answers this
as a special case of Corollary 4.1.

Corollary 4¥.3. If A(f,) = A(f5) = £(f), then for each

p € A(f), the BIUE of P'é; in the combined experiment is a
linear combination of the BLUEs of p'el in the individual
experiments iff

!2=x.fl for some 3 > O

and

4 "1*"2'

Proof: Follows from Corollary 4.1 since if f =, + §, + R, !
and A(f) = £(f3) = £(,), then $, =2f, and
£(f,) nL(R) = (0) iff f,=2f, and R=oO.

Por the sake of completeness, we state the version of
Corollary 4.2 when A(f) = £(f,) = £(f,), in Corollary 4.4.
The proof follows directly from Theorem 3.1l.

Coro ‘ 4;4; It /(f) = .C(Il) = ‘“’2) , then equation (%.19)
is satisfied for all p ¢ J(f) ire




!gaxll for some )\ » O

) s
X3o¥21 XoXo |

Examples where these results are valid may be easily obtained

by considering two block designs with the same incidence matrix,
and having isomorphic designs in their common blocks.
Finally, we remark that in many cases superadditivity of

information matrices is due to the fact that some observations

may not be used in the BIUEs based on individual experiments due
to confounding, but may be released and utilized for estimating

linear functions of ¢ 1 when the data from the experiments are

combined. This is clear from the examples considered in this -

and the previous section.

5. CONCILUDING REMARKS.
In this report we have established the superadditivity of

information matrices and explored conditions for additivity. We
have also found conditions when BLUEs for the com»ined experiment
can be computed simply from the BIUEs of the individual experiments.
The conditions provide geometrical and statistical insight into
problems associated with combining experiments. The results are
for a general linear model. In any particular setting they may
have to be translated to a more readily verifiable form. As an
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example, we may refer to Corollary 3.1 where the conditions for
the equality f =S 1+ !2 have been expressed in a very elemen-
tary form for the block design setup. '

We hope that the results in this report may be profitably
utilized in further research. As an 1lllustration we can consider
a problem of extending an experiment optimally. Suppose an
experimenter has conducted an experiement for comparing treatments
in b block Bl,...,Bb of size k each. Then suppose he is .

given funds to conduct another experiment of the same nature to
improve on his findings. Suppose he has the cholice of either

using new blocks an, ""Beb » Or using the o0ld blocks again.
Suppose the experiment is such that the old blocks have no p
residual effect from the earlier experiment, i.e., the model

remains the same. The question is, how should the experimenter
extend the experiment to get the best results? What should be

his new design?

Let f, be the information matrix of the old design, S,
the information matrix of the extension and § the information
matrix of the combined experiment. If the experimenter uses
new dlocks, then surely S = ’1 + !2 « In fact, if he uses
some or all of the old blocks, then also ¢ ""1""2 as long
a8 the designs in the common dlocks are isomorphic. Thus, he
should use the same blocks and try not to have the new design
isomorphic to the old one. Obviously, if the old design can
be extended to an optimal design in D bDlocks of size 2k each
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(for example, a Balanced Block Design), then the information in
the combined experiment has been "maximized”. Otherwise, one

suspects that in general the extension should be as far as possible
from designs which are isomorphic to the old design.

Now'suppose the experimenter has only two choices: to repeat
the same experiment (same design) in new blocks or in the old
blocks. Clearly the information matrix is the same in both cases,
viz !1 +12 , where .‘1 and !2 have their usual meanings.

But if he uses 0ld blocks he saves a lot of degrees of freedom
which would be otherwise used for the new block effects. He can
use them to test the validity of his model. Alternately, he can
use this to get a better estimate of 32 , the measurement error.
In this case, though he is estimating the estimable treatment
parameters with the same precision as he ﬁou.‘l.d have if he uses
‘new blocks, his estimate of the variance of estimate improves
considerably. We may remark that unfortunately the precision of
estimators of ¢° as has been suggested by Fisher (1971) has
been largely ignored in the literature of optimal design of

experiments.
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